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We present an example analysis and corresponding information graphics of data from a cognitive 
ability assessment as a means to illustrate the use of a Rasch measurement approach and advantages 
inherent in such an approach for a wide variety of teaching and learning investigations. The 
importance of placing measurements of student performances and measurements of assessment item 
difficulties on the same scale is demonstrated through the use of the information graphics. The 
possibilities for teacher-scholars to begin including basic Rasch analysis and graphics within studies 
of students are highlighted. Improved understanding of the relationships between student 
performances and the validity of instruments used to assess those performances is emphasized. The 
importance of key measurement principles, as illustrated with an ability assessment, is discussed in 
relation to potential application with classroom assessment of learning and survey assessment. 

 
Introduction 

 
Studies of teaching and learning in higher 

education or professional settings frequently make use 
of assessments that quantify learners' knowledge levels, 
abilities, motivations, and perspectives. The 
conclusions regarding students that teacher-scholars 
draw from such studies are often affected by the 
diversity among participants examined. Conclusions 
can also be affected by the validity of the instruments 
used to collect data and the analytic approach used to 
determine measures that allow meaning to be drawn 
from data. With these fundamental influences in mind 
we present an example study of college student abilities 
that illustrates the use of a modern measurement 
approach known as the Rasch model (Rasch, 1980), as 
well as the benefits inherent in such an approach for 
visualizing data across a wide variety of teaching and 
learning studies. Through this example we emphasize 
the need to scrutinize the functioning of the instruments 
as a means to improved understanding of the 
implications from investigations. Furthermore, we hope 
to encourage teacher-scholars who are unfamiliar with 
the procedures described here by suggesting appropriate 
software tools and resources.  

 
An Example Study of Student Differences 

 
The context of the illustrative investigation will be 

briefly characterized here to clarify purpose and help 
stimulate thinking about relevance to instructional and 
learning studies generally. First, some of the theoretical 
issues that interested us centered on how students' 
differences in visuospatial ability were distributed for a 
particular group of our students. We also wanted to 
determine whether our selected instrument was an 
appropriate tool for our population of students. That is, 
we first asked whether our cohort of students was 
primarily similar to one another or primarily different 

from one another in visuospatial ability, and second, 
whether the quality and difficulty level of the 
assessment was a good match for most of our students 
in this program. This study was considered part of an 
analysis of student characteristics to inform 
instructional and curriculum design for this type of 
student cohort.  

To address these issues we selected a widely used 
instrument to assess cognitive visuospatial ability. 
Although many assessment instruments could be used 
we selected a particular instrument for its 
appropriateness in illustrating key fundamental issues 
and for its long history of use in research within higher 
education and other settings (Rittschof, 2010; Witkin, 
Oltman, Raskin, & Karp, 1971). Although we focused 
on an ability instrument, many of the general principles 
described are relevant to classroom assessment of 
learning and survey assessment. For example, by using 
this instrument we can focus on’ (a) the issues of item 
difficulty, which are relevant to classroom assessments 
of specific content areas; and (b) the issues of student 
differences, which are relevant to deeper understanding 
of students as learners.   

The purpose of using a Rasch model approach as 
part of the data analysis was to consider the findings 
relative to individual students, the sample of students, 
the instrument's individual items, and the instrument as 
a whole. Further explanation of this rationale for using 
a Rasch approach will follow.  

 
Visuospatial Ability  

 
Current psychological research on the architecture 

of the human mind often involves the components of 
working memory such as those dealing with the 
visuospatial processes (Baddeley, 1999). Investigations 
into the working memory’s visuospatial processes are 
important for improved understanding of human 
perception and learning, as imagery-based information 
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is used increasingly within contemporary instructional 
contexts. One approach to examining visuospatial 
processes involves the administration of tests that 
require perceptual disembedding, i.e., visual locating, 
of simple shapes from within more complex shapes 
(Miyake, Witzki, & Emerson, 2001). A frequently used 
test of perceptual disembedding, commonly referred to 
as field dependence-independence (FDI), is the Group 
Embedded Figures Test (GEFT; Witkin, Oltman, 
Raskin, & Karp, 1971). The use of tests such as GEFT 
in psychological and instructional studies has been 
common since the 1960’s and has continued to the 
present (Zhang, 2004).  

Examples of recent applied studies dealing with 
learning, training, and visuospatial ability include those 
that have focused on problem solving with text and 
visual instruction (Angeli, & Valanides, 2004), web-
based learning (Chen, & Macredie, 2004), and training 
needs among astronauts for improvement of 3-
dimensional spatial orientation skills (Richards, Oman, 
Shebilske, Beall, Liu, & Natapoff, 2002). Over several 
decades of studies assessing students with the GEFT 
instrument, higher GEFT performance has repeatedly 
been associated with cognitive and learning advantages 
in a variety of content domains and instructional 
settings (Rittschof, 2010). Furthermore the GEFT was 
shown to have a reliability of r = 0.89 over 3 years for 
males and females (Witkin et al., 1971). It is worth 
noting that while numerous studies over the years have 
mislabeled the GEFT instrument as a test of cognitive 
style, here we build upon empirical investigations (e.g., 
MacLeod, Jackson, & Palmer, 1986; Miyake, Witzki, & 
Emerson, 2001; Zhang, 2004) that have confirmed 
GEFT to be more accurately classified as a test of 
cognitive ability and not a test of style.  

 
Modern Measurement  

 
The Rasch model is actually a collection, or family, 

of contemporary measurement models (Wright & Mok, 
2004) for determining properties of instruments and 
data in human research. Appropriate use of Rasch 
measures and diagnostic tools represents application of 
a modern paradigm and can lead to substantive 
differences in the interpretations of investigation 
outcomes when compared with classical test theory 
methods (Andrich, 2004). For example, when only raw 
scores and corresponding percentages are used, scores 
do not reflect the differences in difficulty among test 
items. Use of raw scores rather than constructed 
measures can lead to the inaccurate assumption that 
point or percent differences among students are of the 
same magnitude at the low end or mid range of 
performances as they are at the high end of 
performances, for instance. In contrast, scaled measures 
provide advantages for comparing scores of people and 

assessment items because the student performance 
measurement values and the item difficulty 
measurement values are placed on a common scale. 
Two commonly used example members of this family 
of Rasch models are referred to as the dichotomous 
model and the rating scale model. These models allow 
measurement scaling of student differences by using 
raw ordinal scores from assessments to construct the 
scaled scores as interval level measures.  

When assessing student abilities, the Rasch model 
allows student ability and an assessment item difficulty 
parameter to exist on the same measurement scale, thus 
allowing them to be directly comparable. Using the 
Rasch model the probability of a correct response can 
be determined as a function of the difference between 
the measured ability of the student and a difficulty 
parameter of the item in question. For instance, when 
an item and an examinee both have the same Rasch 
measure, this will mean that the person has a 50% 
probability of scoring correctly on that item.  

The Rasch model can be used with the relatively 
modest participant sample sizes (e.g., 50 to 200 
students) that are of interest in many studies of teaching 
and learning where measurement of individual student 
performances and item characteristics is desired. In 
addition, the Rasch approach can allow examination of 
validity for both student groups and individual students, 
even when some data are missing. For mathematical 
descriptions of Rasch analyses and comparisons to 
different analytic models, Smith and Smith (2004) 
provide a comprehensive and readable resource.  

 
Method 

 
Participants  
 

University students (N = 114) at the sophomore 
level attending a medium-size university in the 
Southeastern United States volunteered as an 
optional activity within a teacher education 
prerequisite course. Participants were primarily 
female (approximately 85%) between the 
approximate ages of 19 to 22 years.  

 
Instruments 

 
The Group Embedded Figures Test (GEFT; 

Witkin et al., 1971) assesses visuospatial ability 
using 18 items that each require visually locating, or 
disembedding, specific simple shapes from within 
larger complex shapes, then correctly tracing the 
outline of the embedded simple shapes. Simple 
shapes include the outlines of a hexagon, a 
rectangular prism, and a cross, as well as the outlines 
of shapes resembling a simple house, a necktie, a 
letter t, and the lower right half of a picture frame. 
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Procedure 
 
Experimenters administered the GEFT in classroom 

settings. The procedure included approximately 5 minutes 
for the instruction and practice section, then 10 additional 
minutes for completion of the two sections of the test.  

 
Analyses  
 

Rasch dichotomous model procedures were used on 
examinee scores in order to determine measurement 
properties of the GEFT instrument and of the student 
performances. The dichotomous model is appropriate for 
assessments such as GEFT in which items are scored as 
correct or incorrect. Measurement properties of interest 
that are addressed by the Rasch procedures include 
additivity, unidimensionality, and invariance. Additivity 
refers to a measure that approximates an interval scale so 
values can be added meaningfully, for instance. 
Unidimensionality refers to the single construct the 
instrument is measuring. The construct should closely 
approximate a single identifiable dimension or domain 
rather than many dimensions or domains. This construct 
dimension is often referred to as a latent trait whereby this 
trait directly influences examinee responses to the items 
designed to measure that trait (Reise, Ainsworth, & 
Haviland, 2005). Invariance refers to the need for 
measurement scales to not differ excessively on the 
construct with different situations or groups. That is, the 
scale should be a reliable metric for various categories of 
people on the construct of interest. 

The Winsteps computer program (Linacre, 2006b) was 
used for the Rasch dichotomous model analysis. Winsteps 
was selected for its functionality, its compatibility with other 
data formats, its comparative low cost, and its worldwide 
availability. Microsoft Excel was used in conjunction with 
Winsteps to generate some of the graphics.  

Student results were reported on the following 
measures: scaled ability measures, standard errors, and a 
measure that indicates how well each student fits with 
overall expected responding when compared the other 
students. Assessment instrument item outcomes were also 
indicated by scaled difficulty measures, standard error, and 
fit with the other items. By placing both student outcomes 
and item outcomes on an identical scale, students and 
items were directly and meaningfully compared for greater 
understanding of group, student, instrument, and item 
performance. Graphic illustrations will be used to support 
connections between students and items.  
 

Results 
 
A Scale of Performance: Person Ability Measures 

 
The range and distribution characteristics of scores 

were of interest as we began to understand how 

individuals performed. The measurement scaling of those 
raw scores allowed for the examination of interval 
measures, as opposed to ordered quantities that are 
frequently used in traditional test score analyses. For 
example, comparisons among individuals can account 
for the fact that a one point raw score difference among 
high scorers can mean a larger measured difference 
than a 1 point raw score difference among average 
scorers due to typical variations in item difficulties. 
Thus, after constructing measures, differences among 
groupings of scores along the distribution were more 
meaningfully compared than were differences from raw 
scores or corresponding percentages. 

Four participants had extreme scores, suggesting 
they were not a suitable match with the test. Of these, 
three scored the maximum of 18 correct. Thus, abilities 
of the three high scorers could not be estimated 
specifically because the test was too easy for them, not 
unlike many testing situations. This finding has 
implications for possible revision of the test. At the 
other extreme one student scored the minimum of 0 
correct on the GEFT. It should be noted that manual 
scoring of each participant’s test revealed that low 
scores were not simply due to participants leaving all or 
most items blank. That is, all participants attempted items 
throughout the test.  

Although eliminating such outliers from further 
analysis is often appropriate depending upon one’s 
purpose, we retained these outliers for our primary 
analysis as the responses appeared valid and useful for this 
illustration. Table 1 shows selected examples of person 
statistics ranging from the highest scorers to the lowest. 
The mean raw score was 10.5 out of 18. These raw scores 
were scaled using a Rasch procedure that yields log odds 
units known as logits. Scaled ability measures varied from 
-4.66 to 4.74 logits with the mean score set at zero. By 
comparison, removing the four outliers led to a range of 
measures from -3.36 to 3.42 logits. The fourth column of 
Table 1 shows examples of the student measures. 
Examinees who scored 9 out of 18, which is near the 
midpoint, were 0.29 logits lower on the scale than those 
who scored 10 out of 18. On the other hand, those who 
scored 17 out of 18 were 1.32 logits lower on the scale 
than those who scored 18 out of 18. These logit 
differences illustrate the distinction between raw scores 
versus constructed measures discussed previously.  

A reliability estimate of 0.85 was also calculated using 
Cronbach’s alpha procedure with the students' scores. This 
reliability level supported the favorable internal 
consistency of the assessment with this sample of students.  

 
Patterns of Expected Performance: Person Pathway 
Plots 

  
One important reason for placing student scores and 

items on the same scale is to examine the relationship 
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Table 1 
GEFT Instrument Rasch Person Statistics in Descending Measure Order 

Entry 
Number Total Score Count Measure Model S.E. Infit ZSTD 

18 18.0 18 04.74 1.86 Maximum Estimated Measure 
67 18.0 18 04.74 1.86 Maximum Estimated Measure 
77 18.0 18 04.74 1.86 Maximum Estimated Measure 
13 17.0 18 03.42 1.08  0.2 
31 17.0 18 03.42 1.08  0.2 
. . . . . . . . . . . . . . . . . . 
11 12.0 18 00.87 0.57  0.9 
. . . . . . . . . . . . . . . . . . 
10 10.0 18 00.27 0.54 -1.3 
. . . . . . . . . . . . . . . . . . 
03 9.0 18 -0.02 0.53  2.3 
. . . . . . . . . . . . . . . . . . 
08 4.0 18 -1.58 0.62 -0.4 
. . . . . . . . . . . . . . . . . . 
62 2.0 18 -2.54 0.79 -0.5 
. . . . . . . . . . . . . . . . . . 
97 1.0 18 -3.36 1.06  0.4 
25 0.0 18 -4.66 1.86 Minimum Estimated Error 

Mean 10.5 18 00.55 0.68 0.0 
S.D. 04.3 00 01.69 0.27 1.0 

Note. Values shown represent only an illustrative sample of statistics from across the distribution of 114 students. 
 

 
between ability and item difficulty. Two types of analyses 
are useful for this purpose: error and accuracy. The 
amount of error associated with each student is important 
for placing student scores in proper context. Error is 
influenced by a student's score relative to the number of 
items that have measured difficulty levels near that 
student’s score. That is, more items with difficulty levels 
near the student's ability level typically decrease error. 
This reduction in error occurs because each assessment 
point at or near a student’s ability level can add some 
reliability to the overall measure.  

Standard error was calculated for each student, as 
shown in column 5 of Table 1. Error is also reported in 
logits and corresponds with each different student 
measure. Thus, error can be added and subtracted from 
each measure to yield a range in which each student's 
measure falls. For example, examinee #13's measure 
would fall between 2.34 and 4.50. Notice that extreme 
measures such as those of examinee #18 and examinee 
#25 have the greatest error due to the smaller number of 
items represented at the extremes.  

In addition to error, accuracy can be examined with 
respect to the likelihood that a student’s responses tend to 
fit with expectations. These expectations are based on the 
difficulty levels among items and the patterns of responses 
by students at the various item difficulty levels. For 
instance, we expect the high scoring students to usually 

perform well on the easiest items. Similarly, we expect the 
low scoring students to typically perform less well than 
high scoring students on the most difficult items. 

Accuracy of each measure is reported according to 
how well the measure fits the overall pattern of expected 
scores. It is this pattern of expected scores that 
characterizes the Rasch model. Accuracy is reported as 
infit, one type of weighted fit index that is sensitive to 
systematic misfitting student responses (see column 6 of 
Table 1). In general, scores that exceed standardized infit 
of 2.0 may be problematic in that they are beyond the 
accepted range of fit to be considered unidimensional with 
other items of the instrument. A misfitting item does not 
appear to represent well the construct being measured, 
judging from the pattern of responses to that item. Another 
type of useful and important fit statistic is outfit, which is 
an unweighted fit index that provides another helpful 
perspective on fit, particularly at the extreme values. Outfit 
analysis has similarities to the infit analysis so will not be 
illustrated in this article.  

An information graphic known as a person pathway 
plot (Bond & Fox, 2007), shown in Figure 1, illustrates the 
fit (circle location) and error (relative circle size) for each 
student measure. The plot shows that most examinees had 
productive fit with the Rasch model. Four examinees were 
shown to underfit the Rasch model predictions 
(Examinees 3, 7, 26, and 48) with infit standardized 
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statistics above 2.0. The pattern of responses suggests that 
some of the performances of these examinees conflicted 
dramatically with scores that would be expected on the 
basis of item difficulties and examinee abilities. For 
example, for Examinee 7, the most extreme underfit to the 
model, the measure was near average at -.02 logits, but the 
examinee responded correctly to item 9 and 8, which were 
two of the most difficult items, while responding 
incorrectly to item 10, the easiest item. Examinees 3, 26, 
and 48 showed similarly unexpected response patterns, but 
to a lesser degree than that of Examinee 7. In sum, only 
3.5% of examinees showed unexpected patterns of 
performance on the 18 items. Three examinees were 
shown to overfit the Rasch model (46, 58, 86) with infit 
statistics below -2.0. Overfit of person measures indicates 
very highly predictable patterns of responses. This means 
that the examinee performances met expectations by 
matching the pattern of responding better than expected 
using the relative difficulties, which is not usually as 
problematic as failing to meet expectations. Excessive 
overfitting can, however, potentially mislead by inflating 
reliability values, so it should not be ignored. Excessive 
overfitting can also indicate redundancy among particular 
items which on some assessments may be undesired. 

 
Item Difficulty Measures  

 
When placing focus on an instrument's individual 

items, as opposed to the student performances, the item 
difficulty is an important component of meaningful 
measurement, as indicated by the discussion above. The 
difficulty of each item is based upon the sample of student 
performances being examined. This fact is crucial as 
different groups or samples of students are considered. 
Hence the larger and more diverse the sample of students, 
the more accurate and invariant the measurement of 
difficulty will tend to be. 

Measures of difficulty for the 18 items ranged from -
2.23 to 2.47 logits as shown in Table 2. No item values 
were extreme outliers. Difficulty of items ranged from 
21% correct for item #10 to 88% correct for item #9. Thus 
no item was shown as too difficult or too easy for this 
sample overall. Standard error averaged .25 across the 18 
items, ranging from .22 to .33. The item reliability was .95, 
supporting a wide range of item difficulties and a 
sufficient sample for this analysis. Difficulty data show 
that that almost all (8 out of 9) of the most difficult items 
were among the initial items presented (#2 through #9), 
which does not seem ideal to us from a test design 
perspective. 

 
Quality Control For The Assessment: Item 
Pathway Plots  

 
As with the analysis of student performances, an 

examination of each item's fit relative to all other items 

allowed us to understand whether the items were 
performing in a coherent, unidimensional way. That is, 
by fit we mean that we examined whether each item 
appeared to reflect the construct of interest, field 
dependence-independence (FDI), which the GEFT test 
is designed to assess. 

Item fit statistics (Table 2) were reported as 
standardized scores which allow the level of 2.0 to 
serve as a quality control line. All of the 18 items were 
below or at the infit level of 2.0, indicating acceptable 
fit and correspondence to a unidimensional FDI 
construct from all items. An item pathway plot (Figure 
2) illustrates that all 18 items showed productive fit 
with the Rasch model. However, items #4 and #6 were 
below the -2.0 standardized infit level, overfitting the 
Rasch model. This means that the items met 
expectations by matching the pattern of responding 
better than predicted using relative abilities, as noted 
above with person measures.  

Item #5 was close to under-fitting the Rasch model 
just at the 2.0 level of the standardized infit statistic 
indicating some unexplained noise, but at an acceptable 
level. Future examination of this item is warranted by 
the near underfit and this possible concern.  

 
Comparing The Assessment With The Students: 
Item-Person Map  

 
By placing scores and difficulty levels on the same 

scale, another useful visualization tool known as an 
item-person map (left side of Figure 3) can be created. 
Along with the pathway plots described above, the 
item-person map allows efficient examination and 
interpretation of large amounts of data that even a 
modestly sized group can yield. Item-person maps can 
also be generated using solid bars rather than individual 
symbols representing each person or item.  

The item-person map shows a varied range in item 
difficulty with a small amount of duplication in items 
having similar difficulty levels (items #2 and #3; items 
#4 and #7) slightly above the middle range of all 18 
items. Examinee ability levels are spread across the 
levels of difficulty with most examinees in the middle 
range and their abilities corresponding well with the 
distribution of item difficulties.  

Still, 17 examinees (15%) were measured at ability 
levels above the difficulty level of item #9, the most 
difficult item. In other words, the probability was high 
that these 17 examinees would perform well on any of 
the 18 items, despite their imperfect scores. In addition, 
as noted earlier, three examinees earned perfect scores 
of 18 correct. These observations suggest the need for 
at least one item with greater difficulty than item #9 to 
help improve accuracy. On the other side of the 
measures, three examinees performed relatively lower 
than the difficulty level of item 10, the easiest item. 



Rittschof and Chambers  Modern Measurement Information Graphics      355 
 

Table 2 
GEFT Instrument Rasch Item Statistics in Ascending Measure Order for the 18 Items 

Entry Number Total Score Count Measure Model S.E. Infit ZSTD 
09 024.0 114  2.47 0.28 -1.4 
05 032.0 114  1.90 0.25  2.0 
18 041.0 114  1.37 0.24  0.5 
08 052.0 114  0.79 0.23  1.6 
04 056.0 114  0.59 0.23 -2.5 
07 057.0 114  0.54 0.23 -1.0 
06 059.0 114  0.43 0.22  0.7 
03 062.0 114  0.28 0.23 -0.9 
02 063.0 114  0.23 0.23  0.6 
15 070.0 114 -0.13 0.23 -2.1 
13 074.0 114 -0.35 0.23 -0.9 
14 077.0 114 -0.51 0.24  1.3 
17 080.0 114 -0.69 0.24 -0.1 
11 082.0 114 -0.81 0.25 -0.2 
16 087.0 114 -1.13 0.26 -1.2 
12 090.0 114 -1.34 0.27  0.7 
01 091.0 114 -1.42 0.28  0.2 
10 100.0 114 -2.23 0.33 -0.1 

Mean 063.5 110  0.00 0.25 -0.2 
S.D. 020.3 000  1.17 0.03  1.2 

 
Figure 1 

Person Pathway for 114 Participants on the Group Embedded Figures Test (GEFT)  
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Note. Rasch measures (logits), standardized fit, and standard error (circle size) are plotted. A standardized quality 
control line of +2 is used to highlight those persons who underfit the Rasch model.  
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Figure 2 
Item Pathway for 18 Items of the Group Embedded Figures Test (GEFT) 
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Note. Rasch measures (logits), standardized fit, and standard error (circle size) are plotted.  A standardized quality 
control line of +2 is used to highlight those items that underfit the Rasch model. 
 
 
This suggests some potential benefit to also including an 
item that is easier than item 10, depending upon the 
purpose of the FDI assessment.  

As shown in Figure 3, the measurement scale 
accounts for the meaningful distinctions among 
performances toward the ends of the distribution while the 
raw score distribution fails to reveal these crucial 
performance distinctions. Specifically, on the right hand  
 side of Figure 3 is a distribution of the raw scores that are 
not Rasch scaled. The red lines connecting this raw score 
distribution back to parts of the measurement scale 
distribution of those same scores (the item-person map on 
the left hand side) highlight the differences between the 
two distributions. On the left hand item-person map, 
distances between scores increasingly expand beyond one 
standard deviation above and below the mean, while on 
the raw score distribution distances between subsequent 
scores appear as the same amount.  

 
A Test Item Diagnosis Tool: Item Characteristic 
Curves  

 
For visualization of specific item performances, line 

plots of actual scores on each item can be created 
alongside the Rasch model’s expectation of item-person 

performance on GEFT (see Figure 4). The 95% 
confidence interval lines assist with the visualization of 
departures from the Rasch modeled expectations and their 
relative locations to lower, middle, or higher ability levels, 
from left to right on the item characteristic curve, 
respectively.  

The example item characteristic curve of item #5 
shows deviations from the 95% confidence interval lines. 
Item #5 was indicated previously for closer scrutiny due to 
near underfit of the model. The deviation from the 
empirical curve above the upper confidence interval line 
for lower ability levels illustrates the possible fit problem 
with item #5. This type of plot can be compared with the 
fit statistics overall, as well as with additional analyses and 
comparisons when alternative sample scores become 
available.  

 
Measurement Quality: Item and Person Invariance  

 
The idea behind the concept of invariance of 

estimates is that measures of items and students should not 
vary or differ excessively when either the items or people 
are divided up into groups of interest. To examine this 
crucial measurement requirement, two procedures were 
used that follow from the work of Wright and Stone 
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Figure 3 
Item-person Map (left) and Number Correct Distribution (right) for 114 Examinees  

on the Group Embedded Figures Test (GEFT) 
 

 
Note. Arrow lines highlight the scale differences between the Rasch measurement scale constructed from scores 
versus those same scores on a traditional ‘number correct’ distribution. 
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Figure 4 

Expected (smooth) and Empirical (jagged) Score Item Characteristic Curves with  
95% Confidence Interval Lines for Item 5 

 
 

(1979). In keeping with the need to focus on both 
persons and items, the first procedure allowed for the 
analysis of item difficulty invariance while the second 
procedure allowed for analysis of person ability 
invariance. The following discussion and information 
graphic should clarify this concept further.  

First, the examinee sample was divided into two 
groups according to ability. Item estimates for the high 
versus the low ability groups were then plotted along 
with 95% control lines (Figure 5). These control lines 
were based upon the standard errors and used to 
determine whether the plotted points were sufficiently 
invariant. Figure 5 shows that only one point lies 
outside the control lines, supporting the invariance, on 
the whole, for items on GEFT. That is, item points are 
near (allowing for error) the Rasch modeled dotted 
center line, representing invariance. Precision was 
reduced from the original analysis as reflected in the 
mean error rates for items equaling .31 for low ability 
and .41 for high ability versus .25 for all original 
students together.  

Second, the GEFT items were divided into two 
groups according to item difficulty. Person/case 
estimates for difficult versus easy items were plotted 
with corresponding 95% control lines. Figure 6 shows 
that 46 of 52 points plotted were within the control 
lines. Of the 6 points plotted that were outside control 
lines, 5 were above the upper line and 1 was below the 
lower line. Although the precision of this comparison is 
relatively lower when 9 difficult versus 9 easy items 
were examined, person invariance is generally 
supported by the preponderance of items (88%) near the 
middle dotted line allowing for error. Again, precision 
was reduced from the original analysis as reflected in 
the mean error rates for persons equaling 1.12 for easy 
items and .95 for difficult items versus .68 for all 
original items together.  

The reduction in the number of analyzed cases and 
items between these two invariance analyses also 
yielded lower person reliability estimates, as expected. 
Cronbach Alpha for the high ability analysis was .53, 
while that of the low ability analysis was .68. For the
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Figure 5 
Low Ability Examinee Versus High Ability Examinee Item Measures on the Group Embedded Figures Test (GEFT) 
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Note. Data plotted near the central dotted line and within the 95% control lines reflect item difficulty invariance 
allowing for error. 
 

Figure 6 
Less Difficult (easy) Item Versus Difficult Item Person/Case Measures on the Group  

Embedded Figures Test (GEFT) 

Person Ability Invariance
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Note. Data plotted near the central dotted line and within the 95% control lines reflect person ability invariance 
allowing for error.
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difficult item analysis, Cronbach alpha was .76, while 
that of the easy item analysis was .78. These lower 
reliability levels highlight a limitation of using smaller 
participant sample sizes and a modest number of 
assessment items (e.g., 18) when dividing the sample or 
the items in half for analysis. Dividing the participant 
sample was particularly problematic for reliability. 
However, the outcome of these two procedures 
demonstrated that invariance analyses can yield useful 
preliminary findings even when participant groups of 
interest are closer to 50 than 100 in number, for 
example. Ultimately, these types of error and reliability 
estimates can help researchers decide whether their 
samples of participants and items are sufficient for 
meaningful interpretation of analyses for the context. 

 
Summary of Findings  

 
By examining a few of the general conclusions that 

follow from this analysis, application of these Rasch 
procedures to other data sets can be further considered. 
Overall, in our example analysis college sophomores 
who were seeking entrance to teacher certification 
programs were shown to represent a broad range of 
visuospatial abilities. Rasch analyses allowed us to 
identify with greater accuracy and confidence the 
relative differences among our students in field 
dependence-independence. This type of identification 
can, for example, lead to improved understanding 
among instructional faculty of potential challenges for 
particular students on certain pedagogical approaches 
such as those involving complex problem solving and 
complex spatial information (Angeli, & Valanides, 
2004; Chen, & Macredie, 2004; Richards et al., 2002) . 
The accurately measured differences among our 
students can be used to help anticipate the amount of 
support or the amount of challenge that might be 
necessary to facilitate learning growth among all our 
students. 

The demonstrated diversity of this sample’s 
visuospatial abilities also allowed for a useful 
examination of the 18 items that make up the GEFT 
instrument. We found that the addition of one or more 
items of greater difficulty is suggested by the 15% of 
examinees whose ability measure exceeded the measure 
of the most difficult item. Findings supported item and 
person invariance, and thus the potential for productive 
use of GEFT with this type of adult sample for working 
memory investigations and studies of learning, training, 
and instruction. All 18 items fit the Rasch model, 
though item #5 was close to underfitting the model, 
likely due to deviation from expected scores at the 
lower ability range. This general finding of fit indicates 
that the items are useful together as parts of this 
measure of field dependence-independence. However, 
further examination of item sequencing was suggested 

by the imbalance in difficulty levels among items 
across the instrument. 

For future comparisons using this instrument 
toward a continuing process of validation (Messick, 
1995), individual statistics for both items and 
examinees were provided on logit measures, standard 
errors, point biserial correlations, and fit. Overall 
reliability indices were also generated. Information 
graphics that included pathway plots, an item map, 
item characteristic curves, and invariance plots 
allowed visualization of patterns within the statistics. 
These Rasch statistics and graphic can be useful for 
further examination of individual student 
performances and the efficacy of items. This analysis 
can also be used for comparisons with future Rasch 
analyzed performance data using different embedded 
figures tests such as HFT (Ekstrom, French, Harman, 
& Dermen, 1976) and similar instruments.  

Furthermore, with the continued progress in 
understandings of perceptual disembedding, working 
memory functions (Miyake et al., 2001), and 
associated brain region analysis (Walter & 
Dassonville, 2007), the benefits of using, redesigning, 
and refining instruments such as GEFT were supported 
by this analysis.  

 
Implications and Discussion 

 
This illustrative study is one example of how 

powerful Rasch analytic tools can be meaningfully used 
with a relatively modest participant sample of interest. 
The ability to generate useful measures and other 
related statistics from samples of students is essential 
for many studies of teaching and learning where groups 
of interest are not extremely large. Although the 114 
students used in this study may represent a larger 
sample than many single class sizes, it is also much 
smaller than the hundreds or thousands (Jones, Smith, 
& Talley, 2006) often needed for other types of 
contemporary latent trait analyses. The common 
measurement scale used in the Rasch approach provides 
interpretation advantages for instructors or researchers, 
particularly when compared with the many classical test 
approaches that lack error estimates and a common 
additive scale for both persons and items. The 
invariance analysis illustrated the deleterious effect on 
error and reliability when a group of 54 was used 
instead of the original 114 participants. Where possible 
and appropriate, combining student data from several 
classes who take a common assessment can be used to 
improve reliability and accuracy of measures. 

As noted above, the Winsteps computer program 
is an inexpensive tool that works well with Microsoft 
Excel, and it also imports data from common 
statistical programs such as SPSS, SAS, R, and 
STATA. Winsteps also has a demo version called 
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Ministeps as well as a training version called 
Bond&FoxSteps (Linacre, 2006a), which complements 
a widely recommended Rasch measurement text (Bond 
& Fox, 2007) and features simple functions for creating 
invariance of estimates graphics such as those in 
Figures 5 and 6. Other Rasch computer programs worth 
investigating include Conquest, Facets, RASCAL, and 
RUMM. These programs can be very useful for 
exploring the possible analytic approaches described in 
the current assessment and measurement literature.  

Rasch analytic approaches and visualization tools 
can be a beneficial means to improving instruments and 
ultimately the validity of measurements (Wolfe & 
Smith, 2007) that help lead to more precise 
understandings of issues involving student learning and 
the associated teaching applications. Classroom 
assessments of learning outcomes, rating scales, and 
surveys can also be analyzed using Rasch approaches. 
Note, however, that the different purposes among 
ability tests, surveys, and classroom assessments call 
for different models, assumptions, and uses of the 
measurement scales. For example, when analyzing 
surveys on student differences, instead of ability and 
difficulty one might focus on a person’s agreeability 
and the test item’s endorsability (e.g., agreement or 
disagreement with an attitude statement). In such an 
example, distributions of Likert responses or rating 
scales could be usefully examined with Rasch rating 
scale model that is sensitive to the inherent differences 
with these types of assessments (see Bond & Fox, 
2007).  

Other important applications can include pretest 
and posttest differences on classroom assessments of 
learning that allow for sensitivity to scale distinctions in 
change scores among low pretest performers versus 
those of high pretest performers (Dimitrov & Rumrill, 
2003; Wright, 2003). By estimating measures of student 
performances as opposed to merely quantifying 
performances with ordered data that lacks legitimate 
additivity, both large-scale and small-scale studies of 
students can yield more comparable and thus 
meaningful information toward improved decision 
making and inquiry about teaching and learning. 
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